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Electroviscous forces on a charged particle
suspended in a flowing liquid

By R. G. COX†

Department of Civil Engineering and Applied Mechanics, McGill University,
Montreal, Canada, H3A 2A7

(Received 20 March 1996 and in revised form 1 October 1996)

The force on a charged solid particle (of general shape) suspended in a flowing polar
fluid (e.g. an aqueous electrolyte solution) in the presence of a solid bounding wall (of
general shape) is obtained for the situation in which the electrical double-layer
thickness is very much smaller than the particle size (and the distance between particle
and wall). The very general results so obtained are applied to the sedimentation of a
charged spherical particle in an unbounded polar fluid (with no walls present) for
which the drag force is found to be in complete agreement with Ohshima et al. (1984).
However, there is disagreement between the present results and those obtained in a
number of published papers owing to incorrect assumptions being made in the latter
as to what physical mechanism gives rise to the dominant contribution to the
electroviscous force on the particle.

1. Introduction

When two colloidal particles (or any two solid surfaces) in the presence of polar
liquid (i.e. a liquid with positively and negatively charged ions present, such as an
aqueous electrolyte solution) approach one another the forces between them consist of
(a) a very short-range repulsive force, the Born repulsion, due to the interaction
between the electron clouds of the molecules of the two surfaces, (b) a longer-range
London–van der Waals force due to interactions between the electrical dipole moments
of the molecules of the two surfaces, and (c) double-layer forces arising from an
interaction between diffuse layers of electric charge in the liquid near each of the
surfaces due to a higher concentration of positive ions (if the surface has a negative
charge) or of negative ions (if the surface has a positive charge) (see, for example, Shaw
1986 or Everett 1988). The combined effects of the London–van der Waals and double-
layer forces are given by the classical DLVO theory (Deryagin & Landau 1941; Verwey
& Overbeek 1948).

Such forces between colloidal particles (or other solid surfaces) are of great
importance since the manner in which they vary with distance between the surfaces will
determine whether colloidal particles will coagulate (or whether a colloidal dispersion
will be stable and not coagulate), whether colloidal particles will deposit on a solid
boundary or whether they will deposit on the material of a filter.

When there is a fluid flow present, which may occur, for example, when one
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considers the interaction between a pair of colloidal particles approaching one another
in a shear flow or the sedimentation of a single colloidal particle near a vertical solid
wall, the double-layer forces mentioned above may be altered. This is because, in such
situations, there is a coupling between the electrical and hydrodynamic equations with
the ion concentrations being affected by the convection of ions by the flow and the flow
being affected by electrical body forces. Thus, taking into account such elec-
trohydrodynamic effects, Ohshima et al. (1984) derived the increased drag over and
above the Stokes drag on a charged solid sphere sedimenting in a polar liquid.

In the present paper we consider the very general situation in which a charged solid
particle P (of general shape) is suspended in a polar liquid bounded by a charged solid
wall W (also of general shape). The liquid is moving due to either the motion of the
particle or the wall or because of some prescribed motion (such as a shear flow at
infinity). It is assumed that the thickness (κ−") of the electrical double layer is very much
smaller than a characteristic dimension L (which may be taken as particle size or as
distance of particle from wall) so that a singular perturbation expansion may be made
in terms of the small parameter ε3 (κL)−". In this manner (§§2–12) the force on the
particle is found to be the sum of the purely hydrodynamic force (of order ε!) and an
electrohydrodynamic or electroviscous force (of order ε%), a recipe for obtaining the
latter force being given in §13. The general results are applied (§14) to the particular
case of a sedimenting charged sphere in an unbounded polar liquid (with no walls W
present), with the drag force on the sphere being found to agree exactly with that
obtained by Ohshima et al. (1984). However, disagreement was found to occur between
our general results and the results obtained by a number of authors (Bike & Prieve
1990; Warszynski & van de Ven 1990, 1991; van de Ven, Warszynski & Dukhin
1993a, b) for particular problems because these authors calculated a force (of order ε')
by considering only electrostatic forces and neglected hydrodynamic stresses which are
predicted here to be of order ε%.

2. General problem

Consider an electrically charged smooth solid particle P suspended in a liquid (such
as an aqueous electrolyte solution) containing ionic charges with a charged smooth
solid boundary wall W being present. The liquid is assumed to be moving due to either
the motion of the particle P, the motion of the wall W or because there is some
prescribed flow (such as a planar shear flow) of the liquid at infinity. The length scale
and velocity scale of the flow are taken as L and V, respectively, (with L being, for
example, the particle size or the distance between particle and wall).

At position r relative to some fixed origin and at time t, the velocity of the liquid is
taken as � and the pressure as p. For simplicity, there are assumed to be just two species
of ion present in the liquid (species 1 and 2) which have charges ­z

"
e and ®z

"
e,

respectively (where z
"
¯®z

#
is the ion valency and e the charge of a proton), so that

we consider only symmetric electrolytes (i.e. electrolytes in which both species of ion
have the same valency z

"
). The ion concentrations of species 1 and 2 are taken as n

"
and

n
#
, respectively, the electric potential as ψ and the charge density as ρ.
The independent variables r, t and dependent variables �, p, n

"
, n

#
, ψ and ρ are

expressed in terms of corresponding dimensionless quantities (shown with a tilde) by

r¯Lrh , t¯ (L}V ) th (2.1)
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and

�¯V�h , p¯
ηV

L
ph ,

n
i
¯ n¢ nh

i
(i¯ 1, 2),

ψ¯
kT

z
"
e
ψh , ρ¯ 2n¢ z

"
eρh ,

5

6

7

8

(2.2)

where n¢ is a characteristic value of the ion concentration (which will later be identified
with the values of n

"
or n

#
at infinity), η is the liquid viscosity, k is Boltzmann’s

constant, and T is the absolute temperature.
The concentrations of the ions each satisfy a convective diffusion equation which

may be written in terms of the dimensionless (tilde) variables as

¡4 [²¡4 nh
"
­nh

"
¡4 ψh ®Penh

"
�h ´¯Pe ¥nh

"
}¥th , (2.3a)

¡4 [²¡4 nh
#
®nh

#
¡4 ψh ®Pe (D

"
}D

#
) nh

#
�h ´¯Pe (D

"
}D

#
) ¥nh

#
}¥th , (2.3b)

where a tilde over an operator denotes evaluation with respect to the dimensionless
position variable rh , D

"
and D

#
are the diffusion constants for ions 1 and 2, respectively,

and Pe is a Pe! clet number defined as

Pe¯VL}D
"
. (2.4)

In (2.3a, b) the first, second and third terms in the curly brackets represent the negative
of the flux due, respectively, to diffusion, to convection by the electric field and to
convection by the fluid flow.

The electrostatic relationship between the electric potential and the electric charge
density when written in terms of the dimensionless (tilde) variables becomes

ε#~h #ψh ¯®ρh , (2.5)

where ε¯ 1}κL (2.6)

is the ratio of the inverse of the Debye–Hu$ ckel parameter κ (i.e. the characteristic
double-layer thickness) to the length scale L. Here κ is the quantity

κ¯ 02z#
"
e#n¢

ε
r
ε
!
kT 1

"/#

, (2.7)

where ε
r
is the relative permittivity of the liquid and ε

!
is the permittivity of a vacuum.

In terms of our definitions (2.2) of the dimensionless variables, the electric charge
density may be written in terms of the ion concentrations as

ρh ¯ "

#
(nh

"
®nh

#
). (2.8)

We assume that the liquid is Newtonian and incompressible and that the Reynolds
number (LV}ν) of the flow (where ν is the kinematic viscosity of the liquid) is very
much smaller than unity so that inertia effects in the liquid flow may be neglected. The
momentum and continuity equations for the liquid flow in terms of our dimensionless
variables then become

~h #�h ®¡4 ph ¯λρh ¡4 ψh , ¡4 [�h ¯ 0, (2.9a, b)
where λ is the parameter

λ¯ 2n¢ kTL}ηV (2.10)

which measures the relative importance of the electrical forces on the liquid flow.
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Thus we have equations (2.3a, b), (2.5), (2.8), (2.9a, b) representing eight scalar
equations for the eight dependent variables (given by �h , ph , nh

"
, nh

#
, ψh and ρh ). It is to be

noted that a possible solution of these equations for an unbounded liquid with no solid
surfaces present is one with no volume charges present, i.e. the solution

nh
"
¯ nh

#
¯ constant, ρh ¯ 0,

with electric potential ψh satisfying
~h #ψh ¯ 0

and a purely hydrodynamic flow with

~h #�h ®¡4 ph ¯0, ¡h [�h ¯ 0.

Thus at large distances we will take a solution of this form with ψh ¯ 0 (since we assume
there is no applied electric field at infinity) which, if we take the characteristic ion
concentration n¢ to be that at infinity, we have, as rrh rU¢, the boundary conditions

nh
"
U 1, nh

#
U 1, (2.11a)

ψh U 0, �h C (given flow at infinity). (2.11b, c)

On the surface S
p

of the particle P and on the surface S
w

of the wall W we require
the no-slip boundary condition to be satisfied so that if at a general point on S

p
the

velocity of the solid surface is U
p

(and on S
w

is U
w
), then we require

�h ¯U�
p

on S
p
, �h ¯U�

w
on S

w
, (2.11d )

where we have written
U�

p
¯U

p
}V and U�

w
¯U

w
}V (2.12)

as the dimensionless velocity of the surface (S
p

or S
w
).

We assume that ions (of either species) on reaching a solid surface (S
p

or S
w
) do not

give up their electric charge or in any way react with the surface so that the ion flux
(of either species) normal to the surface (relative to the surface) must be zero. Thus

n[²¡4 nh
"
­nh

"
¡4 ψh ´¯ 0 on S

p
and S

w
, (2.13a)

n[²¡nh
#
®nh

#
¡4 ψh ´¯ 0 on S

p
and S

w
, (2.13b)

where n is the unit normal vector to the surface directed into the liquid. In deriving
(2.13a) and (2.13b) it was noted that the convective flux due to the fluid relative to the
solid surface is zero by (2.11d ).

It is assumed that the surface potential of the particle is everywhere equal to a
constant on S

p
(and equals ψ

p
say) and that of the wall is everywhere equal to another

constant (and equals ψ
w

say). Then we require

ψh ¯ψh
p

on S
p
, ψh ¯ψh

w
on S

w
, (2.14a, b)

where we have written

ψh
p
¯ψ

p50kT

z
"
e1 , ψh

w
¯ψ

w50kT

z
"
e1 (2.15)

as the dimensionless surface potentials of the particle P and wall W.
The solution of the system of equations (2.3), (2.5), (2.8), (2.9) with boundary

conditions (2.11), (2.13), (2.14) depend on, in addition to the shapes, relative positions
and motions of the particle and wall (and flow at infinity), the following six parameters :

Pe, the Pe! clet number for ions of species 1 (see (2.4)) ;
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W

P

O

S

SP

SW

~
dS

r

n

~

F 1. Surface S enclosing the particle P.

D
"
}D

#
, the ratio of diffusivities of the two species of ion;

ε, the ratio of double-layer thickness to L (see (2.6) and (2.7)) ;
λ, the parameter measuring effect of electrical forces on flow (see (2.10)) ;

ψh
p
, the dimensionless particle surface potential (see (2.15)) ;

ψh
w
, the dimensionless wall surface potential (see (2.15)).

In the present work we consider the limit εU 0 with all the other five parameters
being held fixed and of order unity. Thus we are assuming that the double-layer
thickness is very much smaller than particle size or the distance from particle to wall.

Since the total stress tensor σ
ij

is the sum of the hydrodynamic and the electrostatic
Maxwell stress tensors, we see that if we define a dimensionless stress tensor σh

ij
by

σ
ij
¯

ηV

L
σh
ij

(2.16)

then σh
ij

is given as

σh
ij
¯®ph δ

ij
­(�h

i,j
­�h

j,i
)­λε#(®"

#
ψh

,k
ψh

,k
δ
ij
­ψh

,i
ψh

,j
), (2.17)

where all derivatives are with respect to the rh
i
variables. It may then, by using (2.5),

(2.9), be readily shown that the total momentum equation

σh
ij,j

¯ 0 (2.18)

is satisfied. Thus, by using the divergence theorem, it is seen that the total force F acting
on the particle P may be written in dimensionless form, using the dimensionless force
F� where

F¯ ηLVF� , (2.19)

as F�
i
¯&

Sp

σh
ij
n
j
dS� ¯&

S

σh
ij
n
j
dS� , (2.20)

where dS� is an element of area, n is the unit normal vector to the surface directed
outwards away from the particle and S is any closed surface completely surrounding
the particle P and containing only liquid and the particle P itself, as shown in figure
1 (so that no part of the wall W is within S ). Similarly the moment of force G on the
particle P about a reference point O may be written, in terms of the dimensionless
moment G� where

G¯ ηL#VG� , (2.21)
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as G�
i
¯&

Sp

ε
ijk

rh
j
σh
kl

n
l
dS� ¯&

S

ε
ijk

rh
j
σh
kl

n
l
dS� , (2.22)

where ε
ijk

is the alternating tensor and rh
j
is the position of the surface element relative

to the reference point O.

3. Inner and outer regions

In solving the equations (2.3), (2.5), (2.8), (2.9) with the boundary conditions (2.11),
(2.13), (2.14) for the limit εU 0 we expand the dependent dimensionless (tilde) variables
in terms of this parameter ε. In this manner we obtain an outer-region solution.

However such a solution is not uniformly valid for all rh because of ε# multiplying the
highest-order derivatives in (2.5). Thus at each point on the solid surfaces S

p
and S

w

we must form an inner (double-layer) region expansion in ε. Thus at a completely
general point Q at position rh

Q
on the surface S

p
(or on the surface S

w
) we define locally

a set of orthogonal coordinates (ξ, ηh ) lying within the surface S
p

with unit metric tensor
in terms of the outer variables (so that distance ds between (ξh , ηh ) and (ξh­dξh , ηh ­dηh ) is
L[(dξh )#­(dηh )#]"/#. Then at Q we define local outer-region Cartesian coordinates (xh , yh , zh )
with zh normal to S

p
and directed into the liquid and the xh - and yh -axes tangent to the

ξh - and ηh -coordinate lines at Q, as shown in figure 2. Inner-region variables (denoted as
barred variables) for the inner region at Q are then defined by

xh ¯ ε"/#xa , yh ¯ ε"/#ya , zh ¯ εza , th ¯ tb, (3.1)
and

�h ¯U� ­ΩN ¬rh ­�a , ph ¯ pa ,

nh
i
¯ na

i
(i¯ 1, 2),

ψh ¯ψa , ρh ¯ ρa ,

5

6

7

8

(3.2)

where U� here is the dimensionless velocity of the particle at Q (equal to either U�
p

or
U�

w
at Q), ΩN is the dimensionless angular velocity of the surface (¯Ω}(V}L)) where Ω

is the dimensional angular velocity) and rh here is the position relative to Q in outer
variables, so that

�h
x
¯U�

x
­�a

x
®ε"/#Ω�

z
ya­εΩ�

y
za ,

�h
y
¯U�

y
­�a

y
­ε"/#Ω�

z
xa ®εΩ�

x
za ,

�h
z
¯U�

z
­�a

z
­ε"/#(Ω�

x
ya®Ω�

y
xa ).

5

6

7

8

(3.3)

The solution procedure will be to solve as an expansion in ε in the outer region (2.3),
(2.5), (2.8), (2.9) with the boundary conditions (2.11), (2.13), (2.14) at infinity. Then at
each point Q on the surfaces S

p
and S

w
an inner-region expansion in ε is made by

solving the same equations with the same boundary but written entirely in terms of the
inner-region (barred) variables. These solutions are matched asymptotically by
requiring that the inner-region solution at Q for za U¢ be identical to the outer-region
solution as the point Q is approached.

The shape of the particle surface S
p

(or wall surface S
w
) in the neighbourhood of the

point Q may, using the local outer coordinates xh , yh , zh at Q, be written as

zh ¯ a
""

xh #­2a
"#

xh yh ­a
##

yh #­(cubic terms in xh , yh )

­(quartic terms in xh , yh )­… , (3.4)

where the constants a
""

, a
"#

and a
##

are of order unity and have values dependent on
the point Q chosen (and on the choice of (ξh , ηh )-coordinates).
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Q

~z

y~

x~

rQ
~

è~

ê
~

F 2. Definition of xh , yh , zh coordinates with origin at Q.

z

Q′

Q

(ê, è)
~ ~

(ê+ê′, è+è′ )
~ ~ ~ ~

z′

x

ê
~

x′

F 3. Coordinates xa , ya , za at Q(ξh , ηh ) and coordinates xa «, ya «, za « at Q«(ξh­ξ«, ηh ­ηh «).

Within the inner region we will, for simplicity, solve for the dependent variable only
on the za -axis (where xa ¯ ya ¯ 0) since if we have the value of any dependent variable
( f a say) as a function of za in the inner region at all points Q (so that f a is also a function
of ξh and ηh ), then f a and also its xa and ya derivatives must be completely determined. Thus
we write

f a¯ f a(za ; ξh , ηh ). (3.5)

Consider coordinates (xa , ya , za ) used in the inner region at Q (at position (ξh , ηh ) on the
surface S

p
and the coordinates (xa «, ya «, za «) used in the inner region at a neighbouring

point Q« (at position (ξh­ξh «, ηh ­ηh «)), as shown in figure 3. The xa , ya , za coordinates of a
point at xa «¯ ya «¯ 0 on the za «-axis at Q« are readily seen as being given by

ε"/#xa ¯ ξh «®2εza «(a
""

ξh «­a
"#

ηh «)­(cubic)­εza «(quadratic),

ε"/#ya ¯ ηh «®2εza «(a
"#

ξh «­a
##

ηh «)­(cubic)­εza «(quadratic),

εza ¯ εza «­(a
""

ξh «#­2a
"#

ξh «ηh «­a
##

ηh «#)­(cubic)­εza «(quadratic),

5

6

7

8

(3.6)

where the terms (cubic) and (quadratic) are, respectively, cubic and quadratic
polynomials of ξh « and ηh «. The result (3.6) may be inverted (for εU 0) to give ξh «, ηh «, za «
in terms of xa , ya , za , and hence one may obtain the values of first-order partial derivatives
(such as ¥ξh «}¥xa , etc.) and second-order partial derivatives (such as ¥#ξh «}¥xa #, etc.) on the
za -axis (i.e. where xa ¯ ya ¯ 0). These may then be used to calculate on the za -axis the
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partial derivatives of a function f aof the form (3.5) with respect to xa and ya as expansions
in ε :

¥f a

¥xa )
xa =ya =!

¯ ε"/#
¥f a

¥ξh
­O(ε$/#),

¥f a

¥ya )
xa =ya =!

¯ ε"/#
¥f a

¥ηh
­O(ε$/#), (3.7a, b)

¥#f a

¥xa # )
xa =ya =!

¯®2a
""

¥f a

¥za
­O(ε),

¥#f a

¥xa ¥ya )
xa =ya =!

¯®2a
"#

¥f a

¥za
­O(ε), (3.8a, b)

¥#f a

¥ya # )
xa =ya =!

¯®2a
##

¥f a

¥za
­O(ε), (3.8c)

where ¥f a}¥ξh , ¥f a}¥ηh and ¥f a}¥za are calculated with f a of the form (3.5) with ξh and ηh having
values corresponding to the point Q. Thus

0¥#f a¥xa #
­

¥#f a

¥ya # 1 )
xa =ya =!

¯®α
¥f a

¥za
, (3.8d )

where α¯ 2(a
""

­a
##

) (3.9)

is the dimensionless sum of the principal curvatures of the surface at the point Q under
consideration. Note that α is negative for convex surfaces (like a sphere) and positive
for concave ones (such as a spherical cavity).

With appropriate interpretation all of the above results (3.7)–(3.9) are equally valid
for the point Q lying on the wall surface S

w
as on the particle surface S

p
.

4. Solution to the electrical problem

We consider here a special case of the problem discussed in §2 in which we have a
steady state with the fluid velocity � being everywhere zero. This implies that the
velocity U of the surfaces S

p
and S

w
of particle and wall must also be zero and that

�U0 at infinity. We use variables with a subscript E to denote all dependent variables
for this case (i.e. we use nh

"E
, nh

#E
,ψh

E
, ρh

E
, ph

E
), the equations (2.3), (2.5), (2.8), (2.9a) then

becoming (with (2.9b) automatically satisfied)

~h #nh
"E

­¡4 [(nh
"E

¡4 ψh
E
)¯ 0, ~h #nh

#E
®¡4 [(nh

#E
¡4 ψh

E
)¯ 0, (4.1a, b)

ε#~h #ψh
E

¯®ρ
E
, ρh

E
¯ "

#
(nh

"E
®nh

#E
), ®¡4 ph

E
¯λρh

E
¡4 ψh

E
, (4.1c–e)

with the boundary conditions (2.11a, b), (2.13), (2.14) becoming (with (2.11c, d )
automatically satisfied)

nh
"E

U 1, nh
#E

U 1, ψh
E

U 0 (4.2a, b)
as rrh rU¢ with

n[²¡4 nh
"E

­nh
"E

¡4 ψh
E
´¯ 0 on S

p
and S

w
, (4.2c)

n[²¡4 nh
#E

®nh
#E

¡4 ψh
E
´¯ 0 on S

p
and S

w
, (4.2d )

ψh
E

¯ψh
p

on S
p
, ψh

E
¯ψh

w
on S

w
. (4.2e, f )

If we write
qh
"E

¯¡4 nh
"E

­nh
"E

¡4 ψh
E

(4.3)

as the dimensionless flux of the ions of species 1, we see that (4.1a) becomes

¡4 [qh
"E

¯ 0. (4.4)

If we multiply this by ψh
E

and integrate over the liquid volume V contained within a
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~

L*

dl

dS

n*

R*
R

(ãE= constant)

~

~

F 4. Area Σ* bounded by the line L* and lying in the surface Σ defined by ψh
E
¯ constant.

large sphere S
R

of radius R (so that V is bounded by S
p
, S

w
and S

R
) we obtain, upon

using the divergence theorem, the energy equation for the ions of species 1 as

®&
Sp+Sw+SR

ψh
E

qh
"E

[ndS� ¯&
V

qh
"E

[¡4 ψh
E

dV� , (4.5)

where dS� and dV� are elements of surface area and volume (in our dimensionless tilde
variables) and n is the unit normal to the surface (S

p
, S

w
or S

R
) drawn into the liquid.

The boundary conditions (4.2a–c) then show that (so long as nh
"E

, nh
#E

,ψh
E

tend to their
respective limits sufficiently rapidly as rrh rU¢) the integral on the left-hand side of (4.5)
is zero. Thus

&
v

qh
"E

[¡4 ψh
E

dV� ¯ 0. (4.6)

Since the quantity (®qh
"E

[¡4 ψh
E
) is the dimensionless rate of energy conversion into heat

per unit volume (assuming the species 1 of ions have a positive charge) it must be a
strictly non-negative quantity. Thus

qh
"E

[¡4 ψh
E

¯ 0 (4.7)

everywhere. Consider now any equipotential surface Σ given by ψh
E

¯ constant. By
(4.7), qh

E
has zero component normal to Σ, whilst by (4.3), it has components in the

plane of Σ given by
qh
"E

¯¡4
#
nh
"E

, (4.8)

where ¡4
#

is the two dimensional gradient operator on the surface Σ. Thus, by (4.4),
nh
"E

satisfies the two dimensional Laplace equation

¡4 #
#
nh
"E

¯ 0 (4.9)

on the surface Σ. By multiplying (4.9) by nh
"E

and integrating over that part Σ* of the
surface Σ bounded externally by a closed line L* drawn on Σ (see figure 4), we obtain,
using the divergence theorem,

&
L*

nh
"E

¡4
#
nh
"E

[n*dlh ¯&
Σ*

r¡4
#
nh
"E

r#dS� , (4.10)

where dS� is an element of area of Σ*, dlh an element of length of L* and n* a unit vector
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in the plane of Σ* normal to L*. If the equipotential surface Σ is closed (so that L*
can be shrunk to a point as Σ*UΣ ) or if Σ is unbounded with nh

"E
on Σ tending to a

constant value sufficiently rapidly at infinity, we see that the integral on the left-hand
side of (4.10) tends to zero giving

&
Σ

r¡4
#
nh
"E

r#dS� ¯ 0. (4.11)

Since the integrand in (4.11) is strictly non-negative it follows that

¡4
#
nh
"E

¯0 (4.12)

so that nh
"E

is constant on an equipotential surface Σ. Thus the ion flux qh
"E

(and by a
similar argument the ion flux qh

#E
) is zero everywhere. Thus equations (4.1a) and (4.1b)

may be replaced by

¡4 nh
"E

­nh
"E

¡4 ψh
E

¯ 0, ¡4 nh
#E

®nh
#E

¡4 ψh
E

¯ 0, (4.13a, b)

the boundary conditions (4.2c, d ) then being automatically satisfied. The unique
solution of (4.13) which satisfies the boundary conditions (4.2a, b) is

nh
"E

¯ e−ψh
E, nh

#E
¯ e+ψh

E. (4.14)

Equations (4.1d, e) then give
ρh
E

¯®sinhψh
E
, (4.15)

ph
E

¯λ(coshψh
E
®1), (4.16)

where it has been assumed, without loss of generality, that ph
E

U 0 as rrh rU¢. It should
be noted that since ρh

E
is a function of ψh

E
, the electrical body force λρh

E
¡4 ψh

E
acting on

the liquid (see (4.1e)) is conservative so that no fluid flow is produced. With nh
"E

, nh
#E

given by (4.14) the remaining equation (4.1c) with boundary conditions (4.2b, e, f )
give ψh as being determined by

ε#~4 #ψh
E

¯ sinhψ
E
, (4.17)

with ψh
E

U 0 as rrh rU¢, (4.18a)

ψh
E

¯ψh
p

on S
p
, (4.18b)

ψh
E

¯ψh
w

on S
#
. (4.18c)

Although the solution (4.14)–(4.18) to the electrical problem considered here is valid
if ε is large, we will want this solution in the limit εU 0 in the inner and outer regions
of expansion (see §3).

In the outer region where the above (tilde) variables are used we solve (4.17) with the
boundary condition (4.18a) at infinity by expanding ψh

E
in powers of ε# and

substituting into (4.17) to obtain exactly

ψh
E

¯ 0, (4.19a)

correct to all orders in ε. Equation (4.19a) is inconsistent with the outer expansion
derived by Chew & Sen (1982) for a sphere, who obtained a non-zero outer solution.
Substituting (4.19a) into (4.14)–(4.16) we have

nh
"E

¯ 1, nh
#E

¯ 1, (4.19b)

ρh
E

¯ 0, ph
E

¯ 0 (4.19c, d )

everywhere in the outer region (correct to all orders in ε).



Electro�iscous forces on a charged particle 11

In the inner region (using barred variables) at a point Q on the particle surface S
p

we see, from (4.17) and (4.18a), that ψh
E

satisfies on the za -axis (i.e. where xa ¯ ya ¯ 0)

¥#ψa
E

¥za #
­ε 0¥#ψa E¥xa #

­
¥#ψa

E

¥ya # 1¯ sinhψa
E

(4.20)

with ψa
E

¯ψh
p

at za ¯ 0, (4.21)

whilst matching onto the outer solution (4.19) requires

ψa
E

U 0 as za U¢. (4.22)

Thus if we expand ψh
E

for small ε as

ψa
E

¯ψa
E!

­εψa
E"

­… (4.23)

we see on substitution into (4.20)–(4.22) that, by equating like powers in ε, ψa
E!

satisfies

¥#ψa
E!

¥za #
¯ sinhψa

E!
, (4.24a)

with ψa
E!

¯ψh
p

at za ¯ 0, ψ
E!

U 0 as za U¢, (4.24b, c)

and ψa
E"

satisfies

¥#ψa
E"

¥za #
®(coshψa

E!
)ψa

E"
¯®0¥#ψa E!

¥xa #
­

¥#ψa
E!

¥ya # 1 , (4.25a)

with ψa
E"

¯ 0 at za ¯ 0, ψa
E"

U 0 as za U¢. (4.25b, c)

Equations (4.24) may be readily solved to give the value of ψa
E!

as

ψa
E!

¯ 2 ln (1­A
p
e−za

1®A
p
e−za* , (4.26a)

where A
p

is the constant
A

p
¯ tanh(ψh

p
}4).

Equation (4.26a) is the well-known result of the Gouy–Chapman theory for the
potential distribution at a flat plate.

By making use of the results (3.7) and (3.8), we obtain the xa - and ya -derivatives of ψa
E!

(i.e. at order ε!) on the za -axis as

¥ψa
E!

¥xa
¯ 0,

¥ψa
E!

¥ya
¯ 0, (4.26b)

0 ¥#

¥xa #
­

¥#

¥ya #1ψa
E!

¯®α
p

¥ψa
E!

¥za
¯α

p

4A
p
e−za

(1®A#
p
e−#za )

, (4.26c)

where α
p

is the value of α, the dimensionless sum of the principal curvatures, for the
particle surface S

p
at the point Q. Substituting (4.26c) into (4.25a) and solving along

the za -axis (xa ¯ ya ¯ 0) with boundary conditions (4.25b, c) we obtain ψa
E"

as

ψa
E"

¯
α
p
A

p
e−za ²2za­A#

p
(e−#za®1)´

(1®A#
p
e−#za )

. (4.27)

This result agrees with that of Chew & Sen (1982) for the special case of a spherical
particle for which α

p
¯®2.
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If the quantities na
"E

, na
#E

, ρa
E

and pa
E

in the inner region are expanded in the same
manner (4.23) as ψ

E
so that

na
"E

¯ na
"E!

­εna
"E"

­… , na
#E

¯ na
#E!

­εna
#E"

­… ,

ρa
E

¯ ρa
E!

­ερa
E"

­… , pa
E

¯ pa
E!

­εpa
E"

­… ,

5

6

7

8

(4.28)

we see that if these expansions are substituted into equations (4.1a–e) and boundary
conditions (4.2c–e) expressed in inner variables, then at lowest order in ε (i.e. at
order ε!)

¥
¥za (

¥na
"E!

¥za
­na

"E!

¥ψa
E!

¥za *¯ 0,
¥
¥za (

¥na
#E!

¥za
®na

#E!

¥ψa
E!

¥za *¯ 0, (4.29a, b)

¥#ψa
E!

¥za #
¯®ρa

E!
, ρa

E!
¯ "

#
(na

"E!
®na

#E!
),

¥pa
E!

¥za
¯®λρa

E!

¥ψa
E!

¥za
, (4.29c–e)

¥p
E!

¥xa
¯®λρa

E!

¥ψa
E!

¥xa
¯ 0,

¥pa
E!

¥ya
¯®λρa

E!

¥ψa
E!

¥ya
¯ 0, (4.29 f )

with
¥na

"E!

¥za
­na

"E!

¥ψa
E!

¥za
¯ 0 at za ¯ 0, (4.30a)

¥na
#E!

¥za
®na

#E!

¥ψa
E!

¥za
¯ 0 at za ¯ 0, (4.30b)

ψa
E!

¯ψh
p

at za ¯ 0, (4.30c)

whilst matching onto the outer region gives

na
"E!

U 1, na
#E!

U 1, ψa
E!

U 0 as za U¢. (4.31)

Integrating (4.29a) and (4.29b) with respect to za and making use of (4.30a) and (4.30b),
we obtain

¥na
"E!

¥za
­na

"E!

¥ψa
E!

¥za
¯ 0,

¥na
#E!

¥za
®na

#E!

¥ψa
E!

¥za
¯ 0 (4.32a, b)

everywhere. Equations and boundary conditions for na
"E"

, na
#E"

, ρa
E"

… may be obtained
by equating terms of order ε+" in (4.1a–e) and in (4.2c–e) expressed in inner variables.
Rather than solve for na

"E!
, na

#E!
, ρa

E!
and for na

"E"
, na

#E"
, ρa

E"
… from the partial differential

equations, it is easier to note that (4.14)–(4.16) are valid everywhere, including the
inner region, so that we may substitute the expansions (4.23) and (4.28) directly into
(4.14)–(4.16) with the known values of ψa

E!
(given by (4.26a)) and ψa

E"
(given by (4.27))

and so obtain na
"E!

, na
#E!

, ρa
E!

… and na
"E"

, na
#E"

, ρa
E"

… on the za -axis by equating like
powers of ε. Also xa - and ya -derivatives of these quantities on the za -axis may be obtained
using (3.7) and (3.8). These values are all listed in Appendix A.

For an inner region of expansion at a point Q on the wall surface S
w

the results
(4.26), (4.27), (A 1)–(A 4) (in Appendix A) are valid if α

p
is replaced by α

w
(the value

of α for the point Q on S
w
) and A

p
(given by (4.27)) is replaced by A

w
, where

A
w

¯ tanh ("
%
ψh

w
). (4.33)

5. Solution to the hydrodynamic problem

We consider now another special case of the problem discussed in §2 in which we
have a purely hydrodynamic problem in which the liquid is flowing as a result only of
the motion of the particle P and the wall W and of the prescribed flow at infinity. The
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ion concentrations are taken to be zero with no electric field present. The surface
electrical potentials are set equal to zero so the ion concentrations are everywhere equal
and hence ρ¯ 0 everywhere; thus there is no electrical force on the fluid. We use a
subscript H to denote variables for this case (i.e. we use �h

H
, ph

H
), the equations (2.9a, b)

then becoming
~h #�h

H
®¡4 ph

H
¯0, ¡4 [�h

H
¯ 0 (5.1a, b)

and boundary conditions (2.11c, d ) becoming (with (2.11a, b), (2.13) automatically
satisfied)

�h
H

C (given flow at infinity) at rrh rU¢, (5.2a)

�h
H

¯U�
p

on S
p
, �h

H
¯U�

w
on S

w
(5.2b)

Thus the flow field �h
H,p

h
H

is the creeping flow solution to the problem and in the outer
region of expansion does not depend on the parameter ε.

In order to obtain an expansion in ε for this flow field in the inner region at a point
Q (on either the surface of the particle S

p
or of the wall S

w
) we expand �h

H
, ph

H
as a

Taylor series about Q in the xh , yh , zh coordinates. If the inner-region hydrodynamic
variables �h

H
, pa

H
are defined as in (3.2), i.e. as

�h
H

¯U� ­ΩN ¬rh ­�a
H
, ph

H
¯ pa

H
, (5.3)

then we obtain

�a
Hx

¯
¥�h

Hx

¥xh )
Q

xh ­0¥�h Hx

¥yh )
Q

­Ω�
z1 yh ­0¥�h Hx

¥zh )
Q

®Ω�
y1 zh ­

1

2

¥#�h
Hx

¥xh # )
Q

xh #­…,

�a
Hy

¯ 0¥�h Hy

¥xh )
Q

®Ω�
z1xh ­

¥�h
Hy

¥yh )
Q

yh ­0¥�h Hy

¥zh )
Q

­Ω�
x1 zh ­

1

2

¥#�h
Hy

¥xh # )
Q

xh #­… ,

�a
Hz

¯ 0¥�h Hz

¥xh )
Q

­Ω�
y1xh ­0¥�h Hz

¥yh )
Q

®Ω�
x1 yh ­

¥�h
Hz

¥zh )
Q

zh ­
1

2

¥#�h
Hz

¥xh # )
Q

xh #­…,

5

6

7

8

(5.4a)

pa
H

¯ ph
H

r
Q
­

¥ph
H

¥xh )
Q

xh ­
¥ph

H

¥yh )
Q

yh ­
¥ph

H

¥zh )
Q

zh ­
1

2

¥#ph
H

¥xh # )
Q

xh #­…, (5.4b)

where r
Q

denotes value at the point Q. From the no-slip boundary conditions on the
solid surface and from the definition of �h in (3.2), it follows that

�a
H

¯ 0 on zh ¯ a
""

xh #­2a
"#

xh yh ­a
##

yh #­… (5.5)

for all xh , yh . This, when substituted into (5.4a), gives restrictions on the values of the
derivatives of �h

H
at Q. In addition, further restrictions are obtained from (5.4a) and

(5.4b) and from their derivatives with respect to xh , yh and zh by evaluating them at Q.
If we then write (5.4a, b) in terms of the inner variables xa , ya and za defined in (3.1) and
make use of the above restrictions on the derivatives of �h

H
at Q, we may obtain the

values of �a
H

and pa
H

and their xa - and ya -derivatives evaluated on the za -axis (where
xa ¯ ya ¯ 0) as expansions in ε. These are listed in Appendix B.†

6. Electrohydrodynamic equations

We write the solution of the general electrohydrodynamic problem (considered in
§2) determined by system (2.3), (2.5), (2.8), (2.9) and boundary conditions (2.11),
(2.13), (2.14) as the sum of the solution of the purely electrical problem (considered in

† Appendix B is available from the Journal of Fluid Mechanics Editorial Office.
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§4) with dependent variables nh
"E

, nh
#E

, ψh
E
, ρh

E
and ph

E
, the solution of the purely

hydrodynamic problem (considered in §5) with dependent variable �h
H
, ph

H
and a new

set of electrohydrodynamic dependent variables denoted by an asterik. Thus

�h ¯ �h
H
­�h *, ph ¯ ph

H
­ph

E
­ph *,

nh
"
¯ nh

"E
­nh $

"
, nh

#
¯ nh

#E
­nh $

#
,

ψh ¯ψh
E
­ψh *, ρh ¯ ρh

E
­ρh *.

5

6

7

8

(6.1)

Since �h , ph , nh
"
… satisfy system (2.5), (2.8), (2.9) with boundary conditions (2.11), (2.13),

(2.14), nh
"E

, nh
#E

,ψh
E
,… satisfy (4.1) with boundary conditions (4.2) and �h

H
, ph

H
satisfy

(5.1) with boundary conditions (5.2), we see that the electrohydrodynamic variables
�h *, ph *, nh $

"
… satisfy

~h #nh $
"
­¡4 [(nh

"E
¡4 ψh *­nh $

"
¡4 ψh

E
­nh $

"
¡4 ψh *)

®Pe(�h
H
[¡4 nh

"E
­�h

H
[¡4 nh $

"
­�h *[¡4 nh

"E
­�h *[¡4 nh $

"
)®Pe 0¥nh "E¥th

­
¥nh $

"

¥th 1¯ 0, (6.2a)

~h #nh $
#
®¡4 [(nh

#E
¡4 ψh *­nh $

#
¡4 ψh

E
­nh $

#
¡4 ψh *)

®Pe 0D"

D
#

1 (�h
H
[¡4 nh

#E
­�h

H
[¡4 nh $

#
­�h *[¡4 nh

#E
­�h *[¡4 nh $

#
)®Pe 0D"

D
#

1 0¥nh #E¥th
­

¥nh $
#

¥th 1¯ 0,

(6.2b)

ε#~4 #ψh *¯®ρh *, ρh *¯ "

#
(nh $

"
®nh $

#
), (6.2c, d )

~h #�h *®¡4 ph *¯λ(ρh *¡4 ψh
E
­ρh

E
¡4 ψh *­ρh *¡4 ψh *), ¡4 [�h *¯ 0, (6.2e, f )

with boundary conditions

nh $
"
U 0, nh $

#
U 0; ψh *U 0; �h *U0 (6.3a–c)

as rrh rU¢ and
�h *¯0, (6.3d )

n[²¡4 nh $
"
­nh

"E
¡4 ψh *­nh $

"
¡ψh

E
­nh $

"
¡4 ψh *´¯ 0, (6.3e)

n[²¡4 nh $
#
®nh

"E
¡4 ψh *®nh $

#
¡ψh E®nh $

#
¡4 ψh *´¯ 0, (6.3 f )

ψh *¯ 0, (6.3g)
on S

p
and on S

w
.

In the outer region of the expansion (where the tilde variables are used), since the
solution of the purely electrical problem is given by (4.19) and since we apply boundary
conditions only at infinity (and match onto the inner-region expansions as the surfaces
S
p

or S
w

are approached), we see that in this outer region, the electrohydrodynamic
variables �h *, ph *, nh $

"
… satisfy

~h #nh $
"
­~h #ψh *­¡4 [(nh $

"
¡4 ψh *)®Pe(�h

H
[¡4 nh $

"
­�h *[¡4 nh $

"
)®Pe

¥nh $
"

¥th
¯ 0, (6.4a)

~h #nh $
#
®~h #ψh *®¡4 [(nh $

#
¡4 ψh *)®Pe 0D"

D
#

1 (�h
H
[¡h nh $

#
­�h *[¡4 nh $

#
)®Pe 0D"

D
#

1 ¥nh $
#

¥th
¯ 0,

(6.4b)

ε#~h #ψh *¯®ρh *, ρh *¯ "

#
(nh $

"
®nh $

#
), (6.4c, d )

~h #�h *®¡4 ph *¯λρh *¡4 ψh *, ¡4 [�h *¯ 0, (6.4e, f )

with boundary conditions

nh $
"
U 0, nh $

#
U 0; ψh *U 0; �h *U0 (6.5a–c)
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as rrh rU¢. In deriving (6.2a, b) it should be noted that, in general, ¥nh
"E

}¥th and ¥nh
#E

}¥th
are non-zero and must be included since the boundaries S

p
and S

w
move and thus the

time-independent solutions for nh
"E

and nh
#E

as calculated in §4 must be considered as
functions of th .

In the inner region of expansion (where barred variables are used) at a point Q (on
either surface S

p
or S

w
) we obtain the equations and boundary conditions for

�a *, pa *, na $
"
,… valid on the za -axis (i.e. on xa ¯ ya ¯ 0) by writing (6.2) and (6.3) in terms

of the inner variables using (3.1)–(3.3) (noting that, by (5.3) �a *¯ �h *, pa *¯ ph *) and then
substituting the known expansions (see (4.23), (4.26), (4.27), (4.28) (A 1)–(A 4)) for the
electrical problem variables (and their xa - and ya -derivatives) and the expansions (given
in Appendix B) from the purely hydrodynamic problem variables (and their xa - and ya -
derivatives). In doing this it should be noted that, since the xa , ya , za coordinates translate
and rotate with the solid surface, if we define ¥}¥tb as a derivative with respect to
dimensionless time at fixed xa , ya , za so that

¥
¥tb

¯
¥
¥th

­(U� ­Ω� ¬rh )[¡4

then
¥na

"E

¥tb
¯

¥na
#E

¥tb
¯ 0.

Boundary conditions are applied in the inner region only at the solid boundary (i.e. at
za ¯ 0) and match onto the outer region (at Q) as za U¢. The equations and boundary
conditions for �a *, pa *, na $

"
… so obtained are listed in Appendix C.

7. Inner-region solution for na$
"
, na$

#
,ψa * at order ε#

In equations (C 1) and boundary conditions (C 2) (in Appendix C) for the inner
region, it is observed that the lowest-order terms in ε in which the electrohydrodynamic
(starred) variables do not appear (i.e. the lowest-order non-homogeneous terms) are of
order ε$ and occur in equations (C 1a, b). This suggests that na $

"
and na $

#
and hence also

ρa * and ψa * (see (C 1c, d )) are all of order ε$. However, as will be observed later (see
(8.5)), such terms behave like za+" as za U¢. A term like ε$za ¯ ε#zh would match onto a
term of order ε# in the outer region so that nh $

"
, nh $

#
, ρh * and ψh * would be of order ε#. Such

outer-region terms, as will be shown later (see (9.9)), tend to constants (containing
terms like ε#zh !) as the solid boundaries are approached. A term like ε#zh !¯ ε#za ! would
match to a term of order ε# in the inner region so that na $

"
, na $

#
, ρa * and ψa * contain terms

of order ε# as well as those of order ε$ and hence we write

na $
i
¯ na $

i#
ε#­na $

i$
ε$­… (i¯ 1, 2), ρa *¯ ρa $

#
ε#­ρa $

$
ε$­…,

ψa *¯ψa $
#
ε#­ψa $

$
ε$­…, pa *¯ pa $

#
ε#­pa $

$
ε$­….

5

6

7

8

(7.1)

Substituting these expansions into (C 1a–d, g) and boundary conditions (C 2b–d ) we
obtain, by equating terms of order ε#,

¥#na $
"#

¥za #
­

¥
¥za 0na "E!

¥ψa $
#

¥za 1­
¥
¥za 0na $"#

¥ψa
E!

¥za 1¯ 0, (7.2a)

¥na $
##

¥za #
®

¥
¥za 0na #E!

¥ψa $
#

¥za 1®
¥
¥za 0na $##

¥ψa
E!

¥za 1¯ 0, (7.2b)

¥#ψa *#

¥za #
¯®ρa $

#
, ρa $

#
¯ "

#
(na $

"#
®na $

##
), (7.2c, d )
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¥pa $
#

¥za
¯®λ (ρa $# ¥ψa

E!

¥za
­ρa

E!

¥ψa $
#

¥za * , (7.2e)

with
¥na $

"#

¥za
­na

"E!

¥ψa $
#

¥za
­na $

"#

¥ψa
E!

¥za
¯ 0, (7.3a)

¥na $
##

¥za
®na

#E!

¥ψa $
#

¥za
®na $

##

¥ψa
E!

¥za
¯ 0, ψa $

#
¯ 0 (7.3b, c)

on za ¯ 0. By integrating (7.2a, b) with respect to za and making use of (7.3a, b), we see
that

¥na $
"#

¥za
­na

"E!

¥ψa $
#

¥za
­na $

"#

¥ψa
E!

¥za
¯ 0,

¥na $
##

¥za
®na

"E!

¥ψ$

#

¥za
®na $

##

¥ψa
E!

¥za
¯ 0 (7.4a, b)

for all za .
As already mentioned, we assume that na $

"#
, na $

##
, ρa $

#
and ψa $

#
tend to constants as za U¢,

with the constants being determined by matching onto the order-ε# terms in the outer
region. Thus we take

na $
"#

Uβ
"
, na $

##
Uβ

$
, ρa $

#
Uβ

%
, ψa $

#
Uβ

#
(7.5)

and, since (7.2c, d ) are to be satisfied,

β
$
¯β

"
, β

%
¯ 0. (7.6)

If we define nW
"
, nW

#
, ρW , ψW and pW as

nW
"
¯ na

"E!
­ε#na $

"#
, nW

#
¯ na

#E!
­ε#na $

##
,

ρW ¯ ρ
E!

­ε#ρa $
#
, ψW ¯ψa

E!
­ε#ψa $

#
,

pW ¯ pa
E!

­ε#pa $
#
,

5

6

7

8

(7.7)

it is seen, by adding ε# times (7.2a–e) (and boundary conditions (7.3a–c)) to (4.29a–e)
(and boundary conditions (4.30a–c)), that nW

"
, nW

#
, ρW … satisfy the same equations

(4.29a–e) and boundary conditions (4.30a–c) as na
"E!

, na
#E!

, ρa
E!

…. However the
boundary conditions for na

"E!
, na

#E!
, ρa

E!
… as za U¢, namely

na
"E!

U 1, na
#E!

U 1, ψa
E!

U 0, (7.8)
must be replaced by

nW
"
U 1­ε#β

"
, nW

#
U 1­ε#β

"
, ψW U ε#β

#
(7.9)

as za U¢. Solving for ψW , nW
"
, nW

#
, ρW and pW in a manner similar to that for ψh

E
, nh

"E
, nh

#E
, ρh

E

and ph
E

(see (4.14)–(4.18)) we may obtain on the za -axis (for Q on the particle surface S
p
)

ψW ¯ ε#β
#
­2 ln (1­tanh ["

%
(ψh

p
®ε#β

#
)] exp [®(1­ε#β

"
)"/# za ]

1®tanh ["
%
(ψh

p
®ε#β

#
)] exp [®(1­ε#β

"
)"/# za ]* , (7.10a)

nW
"
¯ (1­ε#β

"
) (1®tanh ["

%
(ψh

p
®ε#β

#
)] exp [®(1­ε#β

"
)"/# za ]

1­tanh ["
%
(ψh

p
®ε#β

#
)] exp [®(1­ε#β

"
)"/# za ]*

#

, (7.10b)

nW
#
¯ (1­ε#β

"
) (1­tanh ["

%
(ψh

p
®ε#β

#
)] exp [®(1­ε#β

"
)"/# za ]

1®tanh ["
%
(ψh

p
®ε#β

#
)] exp [®(1­ε#β

"
)"/# za ]*

#

, (7.10c)

with
ρW ¯ "

#
(nW

"
®nW

#
), pW ¯λ²"

#
(nW

"
­nW

#
)®(1­ε#β

"
)´. (7.10d, e)
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Expanding these results as a power series in ε# and comparing with (7.7), the values of
ψa $

#
, na $

"
, na $

#
, ρa $

#
and pa $

#
on the za -axis are obtained as

ψa $
#
¯β

#
®

e−za ²2β
"
A

p
za­β

#
(1®A#

p
)´

(1®A#
p
e−#za )

, (7.11a)

na $
"#

¯ 01®A
p
e−za

1­A
p
e−za1# (β"

­
e−za ²2β

"
A

p
za­β

#
(1®A#

p
)´

(1®A#
p
e−#za ) * , (7.11b)

na $
##

¯ 01­A
p
e−za

1®A
p
e−za1# (β"

®
e−za ²2β

"
A

p
za­β

#
(1®A#

p
)´

(1®A#
p
e−#za ) * , (7.11c)

ρa $
#
¯®

4β
"
A

p
e−za (1­A#

p
e−#za )

(1®A#
p
e−#za )#

­
e−za (2β

"
A

p
za­β

#
(1®A#

p
)) (1­6A#

p
e−#za­A%

p
e−%za )

(1®A#
p
e−#za )$

, (7.11d )

pa $
#
¯®

4λA
p
e−#za

(1®A#
p
e−#za )$

²2β
"
A

p
(za®1­A#

p
za e−#za­A#

p
e−#za )

­β
#
(1®A#

p
) (1­A#

p
e−#za )´, (7.11e)

where (see (4.16)) it has been assumed, without loss of generality, that pa $
#
U 0 as za U¢.

The constants β
"

and β
#

will later be obtained by matching onto the outer-region
expansion and will be found to have values which in general depend on position on the
surface S

p
in the outer variables. Thus by making use of (3.8) and (3.9) we obtain on

the za -axis

¥pa $
#

¥xa
¯®ε"/#

4λA
p
e−#za

(1®A#
p
e−#za )$ (2

¥β
"

¥xh
A

p
(za®1­A#

p
za e−#za­A#

p
e−#za )

­
¥β

#

¥xh
(1®A#

p
) (1­A#

p
e−#za )* , (7.12a)

¥pa $
#

¥ya
¯®ε"/#

4λA
p
e−#za

(1®A#
p
e−#za )$ (2

¥β
"

¥yh
A

p
(za®1­A#

p
za e−#za­A#

p
e−#za )

­
¥β

#

¥yh
(1®A#

p
) (1­A#

p
e−#za )* , (7.12b)

¥ψa $
#

¥xa
¯ ε"/# 9¥β"

¥xh (®
2A

p
za e−za

(1®A#
p
e−#za )*­

¥β
#

¥xh (1®
(1®A#

p
) e−za

(1®A#
p
e−#za )*: , (7.13a)

¥ψa $
#

¥ya
¯ ε"/# 9¥β"

¥yh (®
2A

p
za e−za

(1®A#
p
e−#za )*­

¥β
#

¥yh (1®
(1®A#

p
) e−za

(1®A#
p
e−#za )*: , (7.13b)

and also

0 ¥#

¥xa #
­

¥#

¥ya #1ψa $
#
¯®α

p

¥ψa $
#

¥za
­O(ε), (7.14a)

0 ¥#

¥xa #
­

¥#

¥ya #1 na $
"#

¯®α
p

¥na $
"#

¥za
­O(ε), (7.14b)

0 ¥#

¥xa #
­

¥#

¥ya #1 na $
##

¯®α
p

¥na $
##

¥za
­O(ε), (7.14c)
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where ψa $
#
, na $

"#
and na $

##
on the right-hand sides of these equations are given by (7.11a–c).

For Q on the surface S
w
, we obtain similarly in the inner region the same results

(7.11)–(7.14) with A
p

and α
p

replaced by A
w

and α
w
.

8. Inner-region solution for na$
"
, na$

#
,ψa * at order ε$

Substituting the expansions (7.1) into (C 1a–d ) and boundary conditions (C 2b–d )
we obtain, by equating terms of order ε$, the equations for na $

"$
, na $

#$
, ρa $

$
and ψa $

$
as

¥#na $
"$

¥za #
­0 ¥#

¥xa #
­

¥#

¥ya #1 na $
"#

­
¥
¥za 0na "E!

¥ψa $
$

¥za 1­
¥
¥za 0na "E"

¥ψa $
#

¥za 1
­

¥
¥za 0na $"$

¥ψa
E!

¥za 1­
¥
¥za 0na $"#

¥ψa
E"

¥za 1­na
"E! 0 ¥#

¥xa #
­

¥#

¥ya #1ψa $
#

­na $
"# 0 ¥#

¥xa #
­

¥#

¥ya #1ψa
E!

®"

#
Pe

¥#�h
Hz

¥zh # )
Q

za #
¥na

"E!

¥za
¯ 0, (8.1a)

¥#na $
#$

¥za #
­0 ¥#

¥xa #
­

¥#

¥ya #1 na $
##

®
¥
¥za 0na "E!

¥ψa $
$

¥za 1®
¥
¥za 0na #E"

¥ψa $
#

¥za 1
®

¥
¥za 0na $#$

¥ψa
E!

¥za 1®
¥
¥za 0na $##

¥ψa
E"

¥za 1®na
#E! 0 ¥#

¥xa #
­

¥#

¥ya #1ψa $
#

®na $
## 0 ¥#

¥xa #
­

¥#

¥ya #1ψa
E!

®"

#
Pe 0D"

D
#

1 ¥#�h
Hz

¥zh # )
Q

za #
¥na

#E!

¥za
¯ 0, (8.1b)

¥#ψa $
$

¥za #
­0 ¥#

¥xa #
­

¥#

¥ya #1ψa $
#
¯®ρa $

$
, ρ$

$
¯ "

#
(na $

"$
®na $

#$
), (8.1c, d )

and the boundary conditions as

¥na $
"$

¥za
­na

"E!

¥ψa $
$

¥za
­na

"E"

¥ψa $
#

¥za
­na $

"$

¥ψa
E!

¥za
­na $

"#

¥ψa
E"

¥za
¯ 0, (8.2a)

¥na $
#$

¥za
®na

#E!

¥ψa $
$

¥za
®na

#E"

¥ψa $
#

¥za
®na $

#$

¥ψa
E!

¥za
®na $

##

¥ψa
E"

¥za
¯ 0, (8.2b)

ψa $
$
¯ 0 (8.2c)

on za ¯ 0. In deriving (8.1a, b) it is assumed, as will be shown later (see (11.1)), that �a $
x

and �a $
y

are of order ε% and �a $
z

of order ε&.
By making use of (7.14a–c), (4.26c) and (7.4a, b) it is seen that (8.1a, b) may be

simplified to give

¥
¥za (

¥na $
"$

¥za
­na

"E!

¥ψa $
$

¥za
­na

"E"

¥ψa $
#

¥za
­na $

"$

¥ψa
E!

¥za
­na $

"#

¥ψa
E"

¥za *¯ "

#
Pe

¥#�h
Hz

¥zh # )
Q

za #
¥na

"E!

¥za
, (8.3a)

¥
¥za (

¥na $
#$

¥za
®na

#E!

¥ψa $
$

¥za
®na

#E"

¥ψa $
#

¥za
®na $

#$

¥ψa
E!

¥za
®na $

##

¥ψa
E"

¥za *¯ "

#
Pe 0D"

D
#

1 ¥#�h
Hz

¥zh # )
Q

za #
¥na

#E!

¥za
,

(8.3b)
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which when integrated with respect to za , with use being made of (8.2a, b), gives

lim
zaU¢

(¥na $"$¥za
­na

"E!

¥ψa $
$

¥za
­na

"E"

¥ψa $
#

¥za
­na $

"$

¥ψa
E!

¥za
­na $

"#

¥ψ
E"

¥za *
¯ "

#
Pe

¥#�h
Hz

¥zh # )
Q

&
¢

!

za #
¥na

"E!

¥za
dza , (8.4a)

lim
zaU¢

(¥na $#$¥za
®na

#E!

¥ψa $
$

¥za
®na

#E"

¥ψa $
#

¥za
®na $

#$

¥ψa
E!

¥za
®na $

##

¥ψ
E"

¥za *
¯ "

#
Pe 0D"

D
#

1 ¥#�h
Hz

¥zh # )
Q

&
¢

!

za #
¥na

#E!

¥za
dza , (8.4b)

where, by the values of na
"E!

and na
#E!

(given by (A 1a) and (A 2a)), it is readily observed
that the integrals on the right-hand sides are convergent. By making use of (7.14a), we
may write (8.1c, d ) as

¥#ψa $
$

¥za #
®α

¥ψa $
#

¥za
¯®ρa $

$
, ρa $

$
¯ "

#
(na $

"$
®na $

#$
). (8.4c, d )

Since the right hand sides of (8.4a, b) are constants independent of za , it would appear
that the solution of (8.4a–d ) for na $

"$
, na $

#$
, ρa $

$
and ψa $

$
in the limit of za U¢ must give

values increasing with za like za+". Thus we take

na $
"$

Cα
"
za , na $

#$
Cα

$
za , ρa $

$
Cα

%
za , ψa $

$
Cα

#
za (8±5)

as za U¢. Since we know the asymptotic forms for za U¢ of na
"E!

, na
#E!

and ψa
E!

(obtained from (4.26a), (A 1a) (A 2a)), of na
"E"

, na
#E"

and ψa
E"

(obtained from (4.27),
(A 1b), (A 2b)) and of na $

"#
, na $

##
and ψa $

#
(given by (7.5), (7.6)), we see that (8.4a–d ) in the

limit of za U¢ give four linear algebraic equations for α
"
, α

#
, α

$
and α

%
. These may be

solved to give

α
"
¯α

$
¯ "

%
Pe

¥#�h
Hz

¥zh # )
Q

( &
¢

!

za #
¥na

"E!

¥za
dza­

D
"

D
#

&
¢

!

za #
¥na

#E!

¥za
dza* , (8.6a)

α
#
¯ "

%
Pe

¥#�h
Hz

¥zh # )
Q

( &
¢

!

za #
¥na

"E!

¥za
dza®

D
"

D
#

&
¢

!

za #
¥na

#E!

¥za
dza* , (8.6b)

α
%
¯ 0. (8.6c)

By substituting into these integrals the known values of na
"E!

and na
#E!

given by (A 1a)
and (A 2a) we obtain

α
"
¯α

$
¯

1

2D
#

Pe
¥#�h

Hz

¥zh # )
Q

²(D
#
®D

"
)ψh

p
®4(D

"
­D

#
) ln [cosh ("

%
ψh

p
)]´ , (8.7a)

α
#
¯

1

2D
#

Pe
¥#�h

Hz

¥zh # )
Q

²(D
"
­D

#
)ψh

p
®4(D

#
®D

"
) ln [cosh ("

%
ψh

p
)]´ , (8.7b)

α
%
¯ 0. (8.7c)

As za U¢, the asymptotic forms of na $
"
, na $

#
, ρa * and ψa * may be determined from (7.1),

(7.5) and (8.5) as

na $
"
¯ ε#(β

"
­…)­ε$(α

"
za­…)­… , na $

#
¯ ε#(β

"
­…)­ε$(α

"
za­…)­… , (8.8a, b)
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ρa *¯ ε#(0­…)­ε$(0za­…)­… , ψa *¯ ε#(β
#
­…)­ε$(α

#
za­…)­… , (8.8c, d )

where use has been made of the results (7.6) and (8.6). Here α
"
and α

#
are given by (8.7),

but β
"
and β

#
are as yet undetermined. By matching onto the outer region of expansion

(noting from the equations in Appendix C that any term of order ε% in (8.8) will be no
larger than order za+" as za U¢) we see that at a general point Q on a solid boundary
we require that

nh $
"
¯ ε#(β

"
­α

"
zh )­… , nh $

#
¯ ε#(β

"
­α

"
zh )­… , (8.9a, b)

ρh *¯ ε#(0­0zh )­… , ψh *¯ ε#(β
#
­α

#
zh )­… (8.9c, d )

as zh U 0 with α
"
and α

#
given by (8.7) if Q is on the particle surface S

p
but by (8.7) with

ψa
w

replacing ψh
p

if Q is on the wall surface S
w
.

9. Outer-region solution for nh $
"
, nh $

#
,ψh * at order ε#

The matching conditions (8.9) indicate that in the outer region of expansion nh $
"
, nh $

#
,

ρh * and ψh * are of order ε#. Thus we write

nh $
i
¯ ε#nh $

i#
­… (i¯ 1, 2), ρh *¯ ε#ρh $

#
­… , ψh *¯ ε#ψh $

#
­…, (9.1)

which when substituted into (6.4e, f ) shows that �h * and ph * are zero at this order in ε.
Also substitution into (6.4c, d ) gives

ρh $
#
¯ 0, nh $

"#
¯ nh $

##
. (9.2)

The remaining equations (6.4a, b) and boundary conditions (6.5a, b) then give

~h #nh $
"#

­~h #ψh $
#
®Pe �h

H
[¡4 nh $

"#
®Pe

¥nh $
"#

¥th
¯ 0, (9.3a)

~h #nh $
##

®~h #ψh $
#
®Pe 0D"

D
#

1 �h
H
[¡h nh $

##
®Pe 0D"

D
#

1 ¥nh $
##

¥th
¯ 0, (9.3b)

with nh $
"#

U 0, nh $
##

U 0, (9.4a)

~h #nh $
##

®~h #ψh $
#
®Pe 0D"

D
#

1 �h
H
[¡4 nh $

##
®Pe 0D"

D
#

1 ¥nh $
##

¥th
¯ 0 (9.4b)

as rrh rU¢. Also for matching (see (8.9)) we require that on the surfaces S
p

and S
w

n[¡4 nh $
"#

¯α
"
, n[¡4 nh $

##
¯α

"
, n[¡ρh $

#
¯ 0, n[¡ψh $

#
¯α

#
. (9.5)

Thus, by making use of (9.2), it is seen that nh $
"#

¯ nh $
##

satisfies the convective-diffusion
equation

~h #nh $
"#

¯Pe 0D"
­D

#

2D
#

1 0�h H[¡4 nh $
"#

­
¥nh $

"#

¥th 1 , (9.6a)

with nh $
"#

U 0 as rrh rU¢ (9.6b)

and n[¡4 nh $
"#

¯α
"

on S
p

and S
w
, (9.6c)

which, since the value of α
"

is known from (8.7a), may be written as

n[¡4 nh $
"#

¯
1

2D
#

Pe ²(D
#
®D

"
)ψh

p
®4(D

#
­D

"
) ln [cosh ("

%
ψh

p
)]´

¬(n[¡4 ) (n[¡4 ) (n[�h
H
) on S

p
, (9.6d )

n[¡4 nh $
"#

¯
1

2D
#

Pe ²(D
#
®D

"
)ψh

w
®4(D

#
­D

"
) ln [cosh ("

%
ψh

w
)]´

¬(n[¡4 ) (n[¡4 ) (n[�h
H
) on S

w
. (9.6e)
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The value of ψh $
#

is then

ψh $
#
¯ 0D#

®D
"

D
#
­D

"

1 nh $
"#

­φh , (9.7)

where φh satisfies Laplace’s equation
~h #φh ¯ 0 (9.8a)

with φh U 0 as rrh rU¢ (9.8b)

and n[¡4 φh ¯α
#
®0D#

®D
"

D
#
­D

"

1α
"

on S
p

and S
w
. (9.8c)

This last boundary condition may, by (8.7a), be written in the form

n[¡4 φh ¯Pe 0 2D
"

D
"
­D

#

1ψh
p
(n[¡4 ) (n[¡4 ) (n[�h

H
) on S

p
, (9.8d )

n[¡4 φh ¯Pe 0 2D
"

D
"
­D

#

1ψh
w
(n[¡4 ) (n[¡4 ) (n[�h

H
) on S

w
. (9.8e)

Once nh $
"#

has been determined from (9.6) and ψh $
#

determined from (9.7) and (9.8), we
see that by matching (see (8.9)), β

"
and β

#
are now determined with

β
"
¯ nh $

"#
on S

p
and S

w
, (9.9a)

β
#
¯ψh $

#
on S

p
and S

w
. (9.9b)

Note that β
"
and β

#
will thus be functions of position (in the outer variables) on the

surfaces S
p

and S
w
. Since β

"
and β

#
are now known, the inner-region variables at order

ε# (see §7), which involve β
"

and β
#
, are determined.

Since ρh $
#
¯ 0 everywhere (see (9.2)) it is observed from (6.2c) that ρh * is of order ε%.

Thus in our outer region the charge density ρh * is

ρh *¯ ε%ρh $
%
­… (9.10)

where ρh $
%
¯®~h #ψh $

#
. (9.11)

This, by (9.6a), (9.7) and (9.8a), reduces to

ρh $
%
¯Pe 0D"

®D
#

2D
#

1 0�h H[¡4 nh $
"#

­
¥nh $

"#

¥th 1 , (9.12)

where nh $
"#

is determined by (9.6a) and boundary conditions (9.6b, d ).

10. Inner-region flow at order ε%

By substituting the expansion (7.1) for na $
"
, na $

#
, ρa * and ψh * into the inner-region

equations (C 1e, f, h) it is observed that �a $
x

and �a $
y

must be of order ε% and �a $
z

of order
ε&. Thus we write

�a $
x
¯ ε%�a $

%x
­…, �a $

y
¯ ε%�a $

%y
­…, �a $

z
¯ ε&�a $

&z
­…, (10.1)

which when substituted into (C 1e, f, h) and (C 2a) with the expansions (7.1) give
equations and boundary conditions for �a $

%x
, �a $

%y
, and �a $

&z
as

¥#�a $
%x

¥za #
¯ 0ε−"/# ¥pa $

#

¥xa 1­λρa
E! 0ε−"/# ¥ψa $

#

¥xa 1 , (10.2a)

¥#�a $
%y

¥za #
¯ 0ε−"/# ¥pa $

#

¥ya 1­λρa
E! 0ε−"/# ¥ψa $

#

¥ya 1 , (10.2b)

¥#�a $
&z

¥za
­0ε−"/# ¥�a $

%x

¥xa 1­0ε−"/#
¥�a $

%y

¥ya 1¯ 0, (10.2c)
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with �a $
%x

¯ �a $
%y

¯ 0, �a $
&z

¯ 0 (10.3a, b)

on za ¯ 0. In writing (10.2) it is noted that, by (3.7), the xa - and ya -derivatives are of order
ε"/#.

Since, from the values of ρa
E!

, ¥pa $
#
}¥xa and ¥ψa $

#
}¥xa given respectively by (A 3a) (7.12)

and (7.13), the right-hand side of (10.2a) is exponentially small, it follows that as
za U¢, �a $

%x
must be of the form

�a $
%x

CA
x
za­B

x
. (10.4)

However, an asymptotic term like A
x
za in �a $

%x
(i.e. a term like ε%A

x
za in the inner region)

would match onto a velocity field of order ε$ in the outer expansion. This would give
velocities of order ε$zh ! on the boundaries which would then match back onto a term
of order ε$za ! in the inner-region expansion for �a $

x
. Such a term was assumed in (10.1)

not to exist (or even if it were to be included, it may, upon writing down its equations
and boundary conditions, be readily shown to be zero). Thus we must have A

x
¯ 0 so

that, as za U¢,
�a $
%x

!B
x
. (10.5a)

Integrating (10.2a) twice with respect to za using (10.3a) and (10.5a), the value of B
x

may be obtained as

B
x
¯&

¢

!

9 & za

¢
(0ε−"/# ¥pa $

#

¥xa 1­λρa
E! 0ε−"/# ¥ψa $

#

¥xa 1*dza:dza . (10.5b)

Also in a similar manner we see that

�a $
%y

UB
y

(10.6a)
as za !¢ where

B
y
¯&

¢

!

9 & za

¢
(0ε−"/# ¥pa $

#

¥ya 1­λρa
E! 0ε−"/# ¥ψa $

#

¥ya 1*dza:dza . (10.6b)

By substituting the values of ¥pa $
#
}¥xa and ¥pa $

#
}¥ya given by (7.12), of ¥ψa $

#
}¥xa and ¥ψa $

#
}¥ya

given by (7.13) and of ρa
E!

given by (A 3a) into (10.5b), (10.6b) and evaluating the
resulting integrals, the values of B

x
and B

y
may be obtained as

B
x
¯λ (®4 ln [cosh ("

%
ψh

p
)]

¥β
"

¥xh
­ψh

p

¥β
#

¥xh * , (10±7a)

B
y
¯λ (®4 ln [cosh ("

%
ψh

p
)]

¥β
"

¥yh
­ψh

p

¥β
#

¥yh * (10.7b)

for an inner expansion at a point Q on the particle surface S
p
. Likewise for an inner

region at a point Q on the wall surface S
w

equations (10.7) are still valid if ψh
p

is
replaced by ψh

w
.

11. Outer-region flow at order ε%

Since in the inner region we have velocities ε%�a $
%x

, ε%�a $
%y

, where �a $
%x

UB
x

and �a $
%y

UB
y

as za U¢ with B
x
and B

y
given by (10.7), it follows by matching that in the outer region

the velocity �h * and pressure ph * must be of order ε%. Thus we write

�h *¯ ε%�h $
%
­…, ph *¯ ε%ph $

%
­…. (11.1)
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This when substituted into (6.4e, f ) and (6.5c) (noting that ψh * is of order ε#, see (9.1),
and ρh * is of order ε%, see (9.10)), shows that �h $

%
, ph

%
satisfies the creeping flow equations

~h #�h $
%
®¡4 ph $

%
¯0, ¡[�h $

%
¯ 0, (11.2a, b)

where �h $
%
U 0 (11.2c)

as rrh rU¢. Also on the solid surfaces S
p

and S
w

we require, by matching onto the inner
region, that

�h $
%x

¯B
x
, �h $

%y
¯B

y
,

with B
x

and B
y

given by (10.7). If on the solid surface the normal component �h $
%z

of �h $
%

were to have a value B
z
this would match onto a term of order ε% in the inner-region

expansion of �a $
%z
. However no such term exists since, by (10.1), �a $

%z
is of order ε&. Thus

B
z
¯ 0 and so the boundary condition for �h $

%
on the solid surfaces S

p
and S

w
is

�h $
%
¯B

x
c
x
­B

y
c
y
, (11.2d )

where c
x

and c
y

are unit vectors in the x- and y-directions in the tangent plane to the
surface.

12. Force and torque on a particle

The dimensionless force F� (defined by (2.19)) and moment of force G� (defined by
(2.21)) on the particle P have been shown (in §2) to be given by the integrals (2.20) and
(2.22) taken over any chosen surface S completely enclosing the particle. It is simplest
to take this surface S to be the particle surface S

p
in the outer region (i.e. it is taken

to be just outside the double layer surrounding the particle) so that in the integrands
of (2.20) and (2.22) we use the stress tensor σh

ij
given in terms of outer variables (as in

(2.1)). In the outer region we have shown (see (6.1), (9.1) and (11.1)) that �h , ph and ψh
have expansions in ε of the form

�h ¯ �h
H
­ε%�h $

%
­…, ph ¯ ph

H
­ε%ph $

%
­…, ψh ¯ ε#ψh $

#
­…, (12.1a–c)

where we have used the results (4.19a, d ) that ψh
E

¯ 0 and ph
E

¯ 0 throughout the outer
region. By substituting the expansions (12.1) into the stress tensor (2.17), the
dimensionless force on the particle F� may be obtained as

F� ¯F�
H
­ε%F� $

%
­…, (12.2)

where F�
Hi

¯&
Sp

(®ph
%
δ
ij
­

¥�h $
Hi

¥rh
j

­
¥�h

Hj

¥rh
i

* n
j
dS� (12.3)

is the dimensionless force on the particle due to the purely hydrodynamic problem
(discussed in §5) and

F� $
%i

¯&
Sp

(®ph $
%
δ
ij
­

¥�h $
%i

¥rh
j

­
¥�h $

%j

¥rh
i

* n
j
dS� (12.4)

is the lowest-order correction due to electrohydrodynamic effects and is in fact the drag
force due to the creeping flow �h *, ph * resulting from the apparent slip at the boundaries
S
p

and S
w

(see (11.2d )). Note that the contribution to the force on the particle from
the electrical Maxwell stress due to the electric field resulting from ψh $

#
, is of order ε' and

is therefore negligible compared to the lowest-order electrohydrodynamic contribution
ε%F� $

%
.
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The hydrodynamic force F�
H

is obtained by solving the creeping flow equations
(5.1a, b) for �h

H
, ph

H
with the boundary conditions (5.2a, b) and then substituting the

solution into (12.3). Also likewise the electroviscous force F� $
%

is obtained by solving the
creeping flow equations (11.2a, b) for �h $

%
, ph $

%
with the boundary conditions (11.2c, d )

(using the known values of B
x

and B
y

given by (10.7)) and then substituting that
solution into (12.4).

However, an easier method to obtain the electroviscous force F� $
%

is to make use of
the Lorentz reciprocal theorem (see Happel & Brenner 1965, p. 85). Other details can
be found in Teubner (1982) and Fair & Anderson (1989). Thus we define a velocity with
the ith component �h

Tik
and pressure ph

Tk
satisfying the creeping flow equations

¥#�h
Tik

¥rh
j
¥rh

j

®
¥ph

Tk

¥rh
i

¯ 0,
¥�h

Tik

¥rh
i

¯ 0 (12.5a, b)

due to the particle translating without rotation with unit velocity in the k-direction with
the wall W at rest and the flow tending to zero at infinity so that

�h
Tik

¯ δ
ik

on S
p
, (12.5c)

�h
Tik

¯ 0 on S
w
, (12.5d )

�h
Tik

U 0 as rrh rU¢. (12.5e)

Then by applying the reciprocal theorem to the two flows �h
Tik

, ph
Tk

and �h $
%i
, ph $

%
over the

fluid volume bounded by S
p
,S

w
and a large sphere S

R
of radius R (where we let

RU¢), we obtain F� $
%

as

F� $
%i

¯&
Sp

B$
j
σh
Tjki

n
k
dS� ­&

Sw

B$
j
σh
Tjki

n
k
dS� , (12.6)

where σh
Tjki

is the stress tensor corresponding to the flow �h
Tji

, ph
Ti

, i.e.

σh
Tjki

¯®ph
Ti

δ
jk
­

¥�h
Tji

¥rh
k

­
¥�h

Tki

¥rh
j

(12.7)

and B*¯B
x
i
x
­B

y
i
y

so that by (10.7)

B*¯λ©²®4 ln [cosh ("
%
ψh

p
)]´ ²¡4 β

"
®n[¡4 β

"
n´­ψh

p
²¡4 β

#
®n[¡4 β

#
n´ª (12.8a)

on the surface S
p

and

B*¯λ©²®4 ln [cosh ("
%
ψh

w
)]´ ²¡4 β

"
®n[¡4 β

"
n´­ψh

w
²¡4 β

#
®n[¡4 β

#
n´] (12.8b)

on the surface S
w
.

In a manner similar to that shown above, the dimensionless moment of force G� on
the particle about some chosen reference point O, may be shown to be

G� ¯G�
H
­ε%G� $

%
­…, (12.9)

where G�
Hi

¯&
Sp

ε
ijk

rh
j (®ph

%
δ
kl
­

¥�h
Hk

¥rh
l

­
¥�h

Hl

¥rh
k

* n
l
dS� (12.10)

is the dimensionless hydrodynamic moment of force with �h
%
, ph

%
satisfying (5.1a, b) and
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(5.2a, b) and �h being the position vector of a surface element relative to the reference
point O. Here also the electrohydrodynamic moment of force G� $

%
may be most easily

calculated using the Lorentz reciprocal theorem as

G�
%i

¯&
Sp

B$
j
σh
Rjki

n
k
dS� ­&

Sw

B$
j
σh
Rjki

n
k
dS� , (12.11)

where B* is given by (12.8). Here σh
Rjki

is the stress tensor corresponding to a flow
�h
Rik

, ph
Rk

so that

σh
Rjki

¯®ph
Ri

δ
jk
­

¥�h
Rji

¥rh
k

­
¥�h

Rki

¥rh
j

, (12.12)

where �h
Rik

, ph
Rk

is defined as satisfying the creeping flow equations

¥#�h
Rik

¥rh
j
¥rh

j

®
¥ph

Rk

¥rh
i

¯ 0,
¥�h

Rik

¥rh
i

¯ 0 (12.13a, b)

due to the particle rotating about a fixed point at O with unit angular velocity about
an axis in the k-direction with the wall W at rest and the flow tending to zero at infinity
so that

�
Rik

¯ ε
ikj

rh
j

on S
p
, (12.13c)

�
Rik

¯ 0 on S
w
, (12.13d )

�
Rik

U 0 as rrh rU¢, (12.13e)

where rh is again position relative to the reference point O.

13. Solution procedure

In this section we lay out the recipe, determined in the previous sections, by which
the force F and moment of force G (about a reference point O) on the particle P may
be determined. Thus one proceeds as follows:

(a) Calculate the purely hydrodynamic flow �h
H
, ph

H
in the outer region by solving the

creeping flow equations (5.1a, b) with boundary conditions (5.2a, b).
(b) Calculate the dimensionless force F�

H
and moment of force G� (about O) on the

particle due to the flow field �h
H
, ph

H
using (12.3) and (12.10).

(c) Calculate the ion concentrations nh $
"#

(¯ nh $
##

) in the outer region by solving the
convective diffusive equation (9.6a) with boundary conditions (9.6b, d ).

(d ) Calculate the quantity φh in the outer regions satisfying Laplace’s equation (9.8a)
with boundary conditions (9.8b, d, e), from which the electric potential ψh $

#
in the

outer region is calculated using (9.7).
(e) On S

p
and on S

w
calculate from the results of (c) and (d ) the values of β

"
and

β
#

defined by (9.9a, b).
( f ) Calculate the value of B* on the surfaces (given by (12.8a) for S

p
and (12.8b)

for S
w
).

(g) Calculate the stress tensor σh
Tjki

in the outer region (given by (12.7)) from the
flow field �h

Tik
, ph

Tk
satisfying the creeping flow equations (12.5a, b) with

boundary conditions (12.5c–e).
(h) Calculate the stress tensor σh

Rjki
in the outer region (given by (12.12)) from the

flow field �h
Rik

, ph
Rk

satisfying the creeping flow equations (12.13a, b) with
boundary conditions (12.13c–e).



26 R. G. Cox

(i) Calculate the electrohydrodynamic force F� $
%

and moment of force G� $
%

(about O)
acting on the particle using, respectively, (12.6) and (12.11).

( j) Calculate the total dimensionless force F� and moment of force G� (about O)
using, respectively (12.2) and (12.9).

(k) Calculate the dimensional force F and moment of force G (about O) acting on
the particle using (2.19) and (2.21).

14. Drag on a sedimenting charged sphere

As an example of the solution procedure given in the previous section, we consider
a solid charged sphere of radius a and surface potential ψ

p
translating without rotation

through an unbounded liquid with a constant speed (with no wall W present). Thus in
the previous analysis we take the lengthscale L to be the sphere radius a and the
velocity scale V as the sphere’s speed. For simplicity we will consider here only the limit
where the ion Pe! clet number Pe is very small, i.e.

aV}D
"
' 1 and aV}D

#
' 1. (14.1)

We take in the outer-region spherical polar coordinates (rh , θ,φ) with origin at the
sphere centre and the polar axis (θ¯ 0) in the direction of the sphere’s motion. These
axes are taken to be translating with the sphere so that we have a steady situation in
which the sphere is at rest with the flow at infinity past the sphere in the θ¯π direction
as shown in figure 5. Then (§13, step a) the purely hydrodynamic flow �a

H
, pa

H
is the well-

known creeping flow past a sphere (see Happel & Brenner 1965, p. 124) from which the
dimensionless hydrodynamic drag in the θ¯ 0 direction is found (step b) to be (Stokes
(1851))

F�
H

¯®6π. (14.2)

Then (step c) nh $
"#

satisfies (9.6a) which in our limit of PeU 0 reduces to Laplace’s
equation. This, with the boundary conditions (9.6b, d ) possesses the solution

nh $
"#

¯
3

4D
#

Pe²(D
#
®D

"
)ψh

p
®4(D

#
­D

"
) ln [cosh ("

%
ψh

p
)]´ rh −# cos θ

which may be written in the form

nh $
"#

¯®
3

D
#

Pe²D
#
G­D

"
H´ rh −# cos θ, (14.3a)

where G and H are defined as

G¯ ln "

#
(1­exp (®"

#
ψh

p
)), H¯ ln "

#
(1­exp (­"

#
ψh

p
)). (14.3b)

From (14.3a) it is seen that the actual dimensional concentration of ions in the outer
region is

n
"
¯ n

#
¯ n¢®

3

2

(ε
r
ε
!
) (kT )V

(z
"
e)# (D

"
D

#
)"/# a (0

D
#

D
"

1"/#G­0D"

D
#

1"/#H* 0ar1
#

cos θ (14.4a)

G and H can also be expressed in dimensional form as

G¯ ln (12 91­exp 0®z
"
eψ

p

2kT 1:* , H¯ ln (12 91­exp 0­z
"
eψ

p

2kT 1:* . (14.4b)
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1

r

õ

F 5. Flow in the direction θ¯π past a solid sphere
(rh , θ are spherical polar coordinates in the outer region).

The value of ψh $
#

is then found (step d ) to be

ψh $
#
¯®

3

D
#

Pe²D
#
G®D

"
H´ rh −# cos θ, (14.5a)

which in dimensional form gives the electric potential in the outer region as

ψ¯®
3

2

(ε
r
ε
!
) (kT )#V

(z
"
e)$ (D

"
D

#
)"/# n¢ a (0

D
#

D
"

1"/#G®0D"

D
#

1"/#H* 0ar1
#

cos θ. (14.5b)

From (14.3a) and (14.5a) we obtain on the sphere surface (step e)

β
"
¯®

3

D
#

Pe(D
#
G­D

"
H ) cos θ, β

#
¯®

3

D
#

Pe(D
#
G®D

"
H ) cos θ, (14.6)

from which it is seen that the vector B* is in the θ-direction and has the value (step f )

B$θ ¯®
12λPe

D
#

(D
#
G#­D

"
H #) sin θ. (14.7)

The electroviscous drag force F� $
%

may then be calculated (steps g and i) to obtain its
component in the θ¯ 0 direction as

F� $
%
¯®48πλPeD−"

#
(D

#
G#­D

"
H #) (14.8)

to give the total dimensionless force on the sphere in the direction of the polar axis
(θ¯ 0) as (step j)

F� ¯®6π®48πλε%PeD
"
(D−"

"
G#­D-"

#
H #). (14.9)

Notice that the final result depends on the product of the dimensionless parameters λ
and Pe. If we define Λ¯λPe¯ 12πn¢ b

"
L#, we see that the result depends not on the
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"
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}D

#
)H# plotted as a function of

dimensionless surface potention ψh
p

for various values of the ion diffusivity ratio D
#
}D

"
.

fluid velocity but on the bulk ion concentration, particle size (L), and the
Stokes–Einstein radius of ion 1 (b

"
¯kT}6πηD

"
).

In terms of dimensional quantities, the dimensional drag force F in the polar
direction is thus (step k)

F¯®6πηaV®24π
(ε

r
ε
!
)# (kT )$V

(z
"
e)% (D

"
D

#
)"/# n¢ a (0

D
#

D
"

1"/#G#­0D"

D
#

1"/#H #* . (14.10)

Ohshima et al. (1984) examined theoretically the sedimentation of a charged sphere
in an unbounded liquid for general values of ψh

p
and κa and obtained an expression for

the drag force F which for the limit ε3 (κa)−"U 0 has a value (see their equation (78))
which agrees exactly with that given above by (14.10) (when terms smaller than ε% are
omitted). While it does not seem to be explicitly stated in Ohshima et al. that they
assumed that Pe' 1, they must have done so since, as is seen above, the result (14.10)
does require Pe' 1 and is not valid for Pe of order unity.

It is observed from (14.10) that the effect of the electrohydrodynamic (or
electroviscous) force is always to increase the drag on the sphere since

(D
#
}D

"
)"/#G#­(D

"
}D

#
)"/#H #

is strictly positive. This quantity representing the dimensionless increase in drag has
been plotted as a function of ψh

p
for various values of D

#
}D

"
in figure 6.

The electric field in the outer region (outside the double layer) is exactly that of an
electric dipole at the sphere centre (see (14.5b)) and thus dies away like r−$ as rU¢.
The strength of this dipole in the direction of the sphere’s motion is proportional to the
dimensionless quantity

®(D
#
}D

"
)"/#G­(D

"
}D

#
)"/#H

and is thus directed with the sphere’s motion for ψh
p
" 0 and against the sphere’s

motion for ψh
p
! 0. This dimensionless dipole strength has been plotted as a function

of ψh
p

for various values of D
#
}D

"
in figure 7.

The excess ion concentration over and above that at infinity dies away like rh −# as
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p
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"
.

rh U¢ in the outer region (see (14.4a)) with the total ion concentration being greatest
ahead of the sphere and lowest behind the sphere if the quantity

®(D
#
}D

"
)"/#G®(D

"
}D

#
)"/#H

is positive and the converse if it is negative. This quantity, a measure of the strength
of the dimensionless excess ion concentration, has been plotted in figure 8 as a function
of ψh

p
for various values of D

#
}D

"
from which it is observed that for D

#
}D

"
¯ 1, the

ion concentration is least ahead of the sphere, but for D
#
}D

"
" 1 there is a range of

positive ψh
p

for which the ion concentration is greatest ahead of the sphere with the ion
concentration otherwise being least ahead of the sphere.
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15. Conclusions

In the present paper we have determined the force (and moment of force) exerted on
a charged particle moving in a polar liquid (such as an aqueous electrolyte solution) in
the presence of a charged solid boundary (or boundaries). This was done for the
situation in which the double-layer thickness κ−" is very much smaller than the size L
of the particle so that a singular perturbation expansion could be made in terms of
the small parameter ε3 (κL)−" while keeping all other parameters (namely the
ion Pe! clet number Pe, the ion diffusivity ratio D

"
}D

#
, the parameter λ and the

dimensionless surface potentials of particle ψh
p

and wall ψh
w
) fixed and of order unity.

The actual matching procedure given for this problem has been presented in
simplified form in table 1. Thus the purely hydrodynamic flow of order ε! with velocity
�h
H

and pressure ph
H

in the outer region satisfying the creeping flow equations (and
giving rise to the hydrodynamic force F� of order ε!) is matched onto shear flows
(�a

Hx
, �a

Hy
) of order ε+" and a normal flow �a

Hz
of order ε# in the inner region. Also in the

inner double-layer region there is at order ε! the equilibrium double-layer values of
ψa

E!
, na

"E!
, na

#E!
and ρa $

E!"
and at order ε+" values of ψa

E"
, na

"E"
, na

#E"
and ρa

E"
which would

occur in the absence of any flow. This double layer is then distorted by the flow
(�a

Hx
, �a

Hy
, �a

Hz
), the distortion being of order ε$ and described by ψa $

$
, na $

"$
, na $

#$
and ρa $

$
. This

then matches onto the outer region, producing there a normal flux of ions and a normal
electric field at boundaries which gives rise to an electric field (with potential ψh $

#
) and

an ion concentration variation nh $
"#

¯ nh $
##

of order ε# (with no net charge density at this
order). This potential ψh $

#
, often known as the streaming potential, gives a variation of

potential along the outside of the double layer causing a further distortion of the
double layer, this time of order ε# (and described by ψa $

#
, na $

"#
, na $

##
and ρa $

#
) and inducing

a static pressure variation pa $
#

also of order ε#. The gradient of ψh $
#

tangential to the
double layer together with the equilibrium charge density ρa

E!
gives a tangential force

on the liquid in the double layer. This together with the tangential gradient of pressure
pa
E!

gives a tangential force on the liquid in the double layer of order ε% (with velocities
�a $
%x

, �a $
%y

). This when matched onto the outer region gives rise to a creeping flow (with
velocity �h $

%
and pressure ph $

%
) in the outer region with an apparent slip at the boundaries.

It is the viscous and pressure drag due to this flow (�h $
%
, ph $

%
) given by F� $

%
which, of order

ε% (or more precisely of order λPeε%), gives rise to the largest contribution to the
electroviscous force on the particle. The recipe for obtaining this force is given in §13.

When the theory described here was applied (in §14) to the problem of a sedimenting
charged sphere, with no walls W being present, the drag force on the sphere from the
limiting case of PeU 0 was, as already mentioned, in agreement with Ohshima et al.
(1984). However in a number of papers, including those concerning the translation of
a charged sphere near a plane wall (Bike & Prieve 1990; van de Ven et al. 1993a) and
the approach of two spheres (van de Ven et al. 1993b), the force on the sphere was
obtained as being of order λPe#ε' instead of the much larger force of order λPeε% (or
order of λPe#ε% for the lift force on a sphere near a plane) predicted by the present
theory. This is because the previous authors had assumed a priori that the dominant
electroviscous force was that resulting from the Maxwell stress tensor due to the
streaming potential ψh $

#
(see §12 and table 1). Actually in addition to the possible

contribution to the force at order ε% calculated here, there could be effects of order ε&

and ε' which would be of the same order or larger than that due to the Maxwell stress
arising from the streaming potential. The fact that experiments show the lift force on
a charged sphere in a shear flow near a plane wall to be several orders of magnitude
greater than the predictions based on the order-ε' theory derived solely from the
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Maxwell tensor (Bike & Prieve 1995; Wu, Warszynski & van de Ven 1996) supports the
assertion that the hydrodynamic effects derived here are indeed dominant. It would
also seem that in addition two further papers by Warszynski & van de Ven (1990, 1991)
might also be in error for this same reason.

The author wishes to thank Dr T. G. M. van de Ven for suggesting that, as a result
of large discrepancies observed between experiment and existing theory, a detailed
examination should be given to the problem considered here. This work was supported
by Grant A7007 from the Natural Sciences and Engineering Research Council of
Canada.

Appendix A

On the za -axis (xa ¯ ya ¯ 0) in the inner region, the values of na
"E!

, na
#E!

, ρa
E!

and pa
E!

and
their xa - and ya -derivatives and the values of na

"E"
, na

#E"
, ρa

E"
and pa

E"
required for the

expansion (4.28) of the solution to the electrical problem considered in §4, are obtained
as
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Appendix B

Appendix B is not reproduced here, but can be obtained from the Journal of Fluid
Mechanics Editorial Office.
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Appendix C

The equations for �a *, pa *, na *… valid on the za -axis in the inner region at Q obtained in
the manner described in §6 are
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